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Nystrom plus correction method for solving bound-state equations in momentum space
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A method is presented for solving the momentum-space Schro¨dinger equation with a linear potential. The
Lande-subtracted momentum-space integral equation can be transformed into a matrix equation by the
Nystrom method. The method produces only approximate eigenvalues in the cases of singular potentials such
as the linear potential. The eigenvalues generated by the Nystrom method can be improved by calculating the
numerical errors and adding the appropriate corrections. The end results are more accurate eigenvalues than
those generated by the basis function method. The method is also shown to work for a relativistic equation such
as the Thompson equation.
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I. INTRODUCTION

The momentum-space Schro¨dinger equation has a singu
lar kernel for both the Coulomb and linear potentials. T
Coulomb singularity is removed with the Lande-subtract
method@1,2#. Previous work@3–5# showed how to remove
the singularity from the linear potential using a subtract
method with basis functions. A problem with this method
that one must guess a suitable set of basis functions in
vance. In this paper, we show that Nystrom method@7# can
solve the same problem more simply and accurately.
begin with a review of the basis function method. Then
introduce the Nystrom method and apply it to thes-state
momentum-space Schro¨dinger equation with a linear poten
tial. We use our new numerical results to show that
Nystrom plus correction method is more accurate than
basis function method. At the end, we generalize
Nystrom method to higher angular momentum quant
numbers (l .0).

II. BASIS FUNCTION METHOD

We begin this paper with a discussion of the basis fu
tion method to give the proper theoretical motivation. W
shall use the simplest momentum-space Schro¨dinger equa-
tion to illustrate the principles of the numerical method
which is thes-state equation.

The momentum-space Schro¨dinger equation is related t
an integral equation of the Fredholm type

E K~p,p8!f~p8!dp85lf~p!. ~1!

Suppose that the wave functionf can be expanded in a se
of basis functions$gi%, such that

f~p!5(
i 51

N

Cigi~p!, ~2!
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whereCi are constant coefficients. Substitute Eq.~2! into Eq.
~1! to obtain

(
i 51

N E K~p,p8!Cigi~p8!dp85l(
i 51

N

Cigi~p!. ~3!

Now multiply both sides of Eq.~3! with gj (p) and integrate
over p to symmetrize the equation overi and j,

~4!

and the result is a matrix equation,

(
i 51

N

Ai j Ci5l(
i 51

N

Bi j Ci , ~5!

where Ci is the eigenvector andl is the eigenvalue. The
indicesi and j correspond to the quadrature pointsp andp8.
N represents the number of mesh points. In the case of
momentum-space Schro¨dinger equation with a Coulomb o
linear potential, the kernelA is singular. A simple example is
the momentum-space Schro¨dinger equation with a linear po
tential in theS state@3,5#,

~6!

wherey5(p21p82)/2p8p,

Q08~y!5p8pF 1

~p1p8!21h2
2

1

~p2p8!21h2G , ~7!

and
©2001 The American Physical Society03-1
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h2

p8p
Q09~y!5h2~p21p821h2!

3F 1

~p1p8!21h2
2

1

~p2p8!21h2G 2

. ~8!

Lande subtraction@3,5,6# involves subtracting a zero term

E
0

`F h2

p8p
Q09~y!1Q08~y!Gdp850 ~9!

from Eq. ~6! such that

p2

2m
fn0~p!1

lL

pp2E0

`F h2

p8p
Q09~y!1Q08~y!G

3@fn0~p8!2fn0~p!#dp85En0fn0~p!. ~10!

Using Eqs.~7! and ~8!, the integral in Eq.~10! for p.0 in
the limit of y→1 can be shown to equal

lim
h→0

lim
p→p8

lL

p F2h2H 1

~p2p8!21h2J 2

2
1

~p2p8!21h2G
3~p2p8!2

dfn0

dp
50. ~11!

The order of the limits in Eq.~11! is important. The reverse
order will lead to the nonsensical result*Q08(y)dp850.
Next, in the limit of p,p8→0, (p1p8)25(p2p)2. By sub-
stituting this equality into Eqs.~7! and ~8!, it can be shown
again that the integral in Eq.~10! vanishes forp→0 at y
51. At the end, the integral vanishes aty51;p. Away from
the singularities, both integrands in the integral of Eq.~10!
are finite. By takingh→0, the first integrand vanishes. Th
final form of Eq.~10! is

p2

2m
fn0~p!1

lL

pp2E0

`

Q08~y!@fn0~p8!2fn0~p!#dp8

5En0fn0~p!, ~12!

where Q08(y)51/(12y2). As mentioned before,f is ex-
panded in basis functions, followed by integrating Eq.~12!
over p to generate a matrix equation. The basis functio
used in previous publications@3,5# are

gi
A~p!5expF2p2i 2

M G ~13!

and

gi
B~p!5

1

~ i /M !21p4
, ~14!
06670
s

respectively, whereM is the maximum number of basis func
tions used.M has a maximum because the code crashes w
too many basis functions are used. The basis functionsgi

A(p)
andgi

B(p) haveM518.
The singularity of the kernel is a major challenge in so

ing the integral equation with a linear potential. It was sho
@3# that a simple pole remains even after subtraction. T
role of the basis functions is to make possible the evalua
of the Cauchy principal value of the subtracted integral us
the Sloan method@8#. To illustrate the Sloan method, w
suppose thatf (x) has a simple pole such that

f ~x!5
g~x!

x
~15!

where g(x) is regular. The Cauchy principal value of th
subtracted integral off (x) can be evaluated if the range o
integration is symmetric. For example, the numerical integ
tion of

E
21

1 g~x!2g~0!

x
dx ~16!

yields the Cauchy principal value because the pointx50 is
skipped when quadrature points are generated in the s
metric interval (21,1). The subtraction term has zero co
tribution since

E
21

1 1

x
dx50. ~17!

The purpose of this term is to justify the existence of t
Cauchy principle value and to reduce numerical errors.
order to apply the Sloan method to Eq.~12!, the integration
variable is transformed fromp to x such thatx is centered at
zero and its range is symmetric.

In the case of the Coulomb potential, the kernel ha
logarithmic singularity,

Q0~y!5
1

2
lnUy11

y21U, ~18!

which is completely removed by Lande subtraction@1,3# be-
cause no simple pole remains after the subtraction.

The key to the success of the basis function method is
availability of a suitable set of basis functions for a particu
problem. Unfortunately there is noa priori reason why the
same set of basis functions will work in every situation. F
this reason, it may be advantageous to have a method~such
as the Nystrom method! that does not depend on the choi
of the basis functions.

III. NYSTROM METHOD

In general, an integral equation of the Fredholm type

G~p!f~p!1E
0

`

F~p,p8!f~p8!dp85lf~p! ~19!

can be rewritten as a matrix equation as
3-2
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(
j 51

N

Ki j f j[(
j 51

N

~Gii 1Fi j !f j5lf i , ~20!

whereKi j is the kernel andi and j are now indices corre
sponding top andp8. Instead of integrating overp from 0 to
`, we integrate overx from 21 to 1. Transformxi to pi by
the transformation

p~x!5tanS 11x

4
p D . ~21!

The mesh pointsxi and the weightswti are generated by th
gaussian quadrature rule using the routine gauleg fromNu-
merical Recipes@7#. In order to integrate alongxP@21,1#
instead ofpP@0,̀ ), Eq. ~19! is transformed as

G~x!f~x!1E
21

1

F~x,x8!f~x8!
dp8

dx8
dx85lf~x! ~22!

Changing the dummy variable inside the integral and sub
tuting the differentiation of Eq.~21! with

dp5
p

4
sec2S 11x

4
p Ddx5

p

4
~11p2!dx ~23!

gives

pi
2

2m
f i1

lL

4pi
2E

21

1

Q08~yÞ1!@f j2f i #sec2S 11xj

4
p Ddxj

5Ef i . ~24!

Equation~24! can now be written as a matrix equation,

pi
2

2m
f i1

lL

4pi
2

3(
j 51

N

Q08~yÞ1!f jsec2S 11xj

4
p Dwtj ,

2
lL

4pi
2
f i (

k51

N

Q08~yÞ1!sec2S 11xk

4
p Dwtk5Ef i .

~25!

The left-hand side of Eq.@25# is the kernel times the eigen
vector and the right-hand side is the eigenvalue times
eigenvector. The sum overk is independent of the eigenvec
tor, which is just a scalar. The terms on the left that ha
only one indexi belong to the diagonal elementsKii . The
terms with mixed indicesi and j make up the off-diagona
elementsKi j . More explicitly, the matrix elements of th
kernel are

Kii 5
pi

2

2m
2

lL

4pi
2 (

k
Q08~yÞ1!~11pk

2!wtk , ~26!
06670
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Ki j 5
lL

4pi
2

Q08~y!~11pj
2!wtj , ~ iÞ j !. ~27!

So far the kernelK is asymmetric under the interchang
of i and j. We can improve the stability and the efficiency
the numerical solutions by symmetrizing Eq.~25!. We do so
by multiplying the equation withpi

2(11pi
2). It will change

the original matrix equation

K•x5lx ~28!

to an equivalent matrix equation

K 8•x5lC•x, ~29!

whereC is a diagonal matrix andK 85C•K . If C is positive
definite, meaning

xT
•C•x>0 ; vectors x, ~30!

thenC can be Cholesky-decomposed as

C5L•LT, ~31!

whereL is a unique lower triangular matrix. The reason f
performing Cholesky decomposition is that the new matr

K 9[L21
•K 8•~L21!T ~32!

is real symmetric and yields the same eigenvalues as
~29!. In the case ofCii 5pi

2(11pi
2), C is guaranteed to be

positive definite. After symmetrization, Eq.~26! does not
change (Kii9 5Kii ) while Eq. ~27! becomes

Ki j9 5
lL

4pipj
Q08~y!A~11pi

2!~11pj
2!wtiwtj ~ iÞ j !.

~33!

The eigenvalues ofK 9 can be calculated by using stan
dard packages such asEISPAK. In this paper, we use the tred
and tqli routines fromNumerical Recipes@7#.

IV. CORRECTION METHOD

Maung, and co-workers@3,5# have shown that the subtrac
tion method does not completely remove the singularity
y51. There is a residual simple pole term

2
4lL

p

dfn0

dp E
0

` p82

~p81p!2~p82p!
dp8 ~34!

remaining after the subtraction. The basis function meth
evaluates the Cauchy principal value by the Sloan metho
described in Sec. II. The Sloan method eliminates the sim
pole term by integrating symmetrically around the singul
ity. Symmetrical integration involves splitting the range
integration into two intervals,

E
0

`

dp85E
0

2p

dp81E
2p

`

dp8. ~35!
3-3



e
c
y

es
g

y

he
fe

e
th
w
tr
ew
p

he

e

t
e

t
c-

he

a-
me

-

y,

i-

ex-

se

nt
of

t be
c-

al
sis
of
the
op-
eri-
th-

-
eck

ALFRED TANG AND JOHN W. NORBURY PHYSICAL REVIEW E63 066703
The singularity atp5p8 is contained in the first term on th
right-hand side of Eq.~35! which is assigned a symmetri
transformation rule (dp8/dx)1. The second term generall
has a different transformation rule (dp8/dx)2 because it is
mapping between two different sets, namely, (2p,`)
→(1,M # ~for some real numberM ), such that

E
0

`

dp8→E
21

1 S dp8

dx8
D

1

dx81E
1

M S dp8

dx8
D

2

dx8. ~36!

Notice that the division of the range of integration mov
with p. If two transformation rules are used with a movin
division, each row~column! of the kernel has a different wa
to map@0,̀ ) to @21,M #. But the eigenvectorf(p) must be
mapped tof i in a unique way. This mismatch between t
mappings of the kernel and the eigenvector does not af
the basis function method~see Eq.~2.24! of Ref. @3#!,

(
i 51

N

CiF E
0

` p4

2m
gj~p!gidp1

lL

p E
0

`E
0

`

Q08~y!gj~p!@gi~p8!

2gi~p!#dp8dpG5E(
i 51

N

CiE
0

`

p2gj~p!gi~p!dp ~37!

because the eigenvectorCi is an N-tuple of the coefficients
of the basis function expansion of the wave functionf(p)
and is independent of the transformation rules. In the cas
the Nystrom method, the problem is real, at least for
range of integration that we are interested in. Therefore
cannot evaluate the Cauchy principal value by symme
integration in the Nystrom method. In other words, a n
method is needed to treat the errors arising from the sim
pole term.

So far the error term Eq.~34! is not included in the
Nystrom kernel in our derivation and is contributing to t
errors of the eigenvalues. Since the error term@Eq. ~34!#
involves df/dp, we associate it with the error of the wav
function

Df5Dp
df

dp
;

1

N

df

dp
, ~38!

where the mesh sizeDp has anN21 dependence. This fac
leads to an estimate of theN dependence of the error of th
eigenvalue,DE. Let the approximate eigenvector bef8 and
the approximate eigenvalue beE8. It is reasonable to say tha
an approximate kernelK acting on an approximate eigenve
tor f8 yields an approximate eigenvalueE8 as in

Kf85E8f8 ~39!

⇒K~f1Df!5~E1DE!~f1Df!. ~40!

It is easy to see that

DE.~K2E!
Df

f
5S K2E

f D df

dp
Dp5e

1

N
. ~41!
06670
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It is safe to assume that (K2E)df/dp!1. f21 can be in-
terpreted as the normalization. The product of all of t
pseudoconstants is labeled as the coefficiente. The approxi-
mate eigenvalueE8 produced in the background of Eq.~34!
is related to the true eigenvalueE by

En85En1e f n~N!, ~42!

wheren is the principal quantum number,e is a constant, and
f n(N) is a function approximately equal toN21. In general,
f n(N) varies slightly depending on the type of integral equ
tion and the potential. As a first order approximation, assu
that

f n~N!5N212a(n21). ~43!

The exponent of Eq.~43! is a first order Taylor series expan
sion of some negative unity function aroundn51. The con-
stant a is always taken to be small. More particularl
choose ana such that the variances ofEn , e, and x2 are
minimized in the linear fit. Finally the refinement of an e
genvalue involves generating a set ofEn8 for variousN by the
Nystrom method and then extrapolatingEn by ax2 linear fit
in the graph ofEn versusf n(N). In the case of Eq.~12!, a
50.004 is an optimal choice. The numerical results are
plained in Sec. VI.

The order of the Nystrom algorithm is derived from tho
of the tred2 and tqli routines, which isO(N2) @7#, compared
with the basis function’sO(M2N), which comes from the
product of the size of the matrixM2 and the number of
integration mesh points.N is typically around 1000 andM is
20. The basis function method is generally more efficie
than the Nystrom method. However, for any given set
basis functions, the accuracy of the eigenvalues canno
improved arbitrarily by increasing the number of basis fun
tions becauseM is bounded from above due to numeric
errors. The prospect of improving the accuracy of the ba
function algorithm depends on the availability of a set
more suitable basis functions for a specific problem. In
case of the Nystrom plus correction method, accuracy is
timized automatically by the correction scheme. The num
cal results obtained by the Nystrom and basis function me
ods are quoted with optimal accuracy in this paper.

V. EXACT S-STATE SOLUTION

The eigenvalue of Eq.~12! can be solved exactly in con
figuration space. We shall use the analytic results to ch
our numerical results. The nonrelativistic Schro¨dinger equa-
tion can be written as

S d2

dr2
1

2

r

d

dr D R22m@lLr 2E#R50. ~44!

Let S[rR, then Eq.~44! can be simplified as

d2

dr2
S22m@lLr 2E#S50. ~45!
3-4
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TABLE I. Comparison of eigenenergies in GeV of the nonrelativistic Schro¨dinger equation with a linear
potential between the Nystrom method and the basis Function~BF! method. The basis functions bein
referred to here aregi

B(p)5@( i /M )21p4#21. The values ofl 50, lL55 GeV, andm50.75 GeV are used

Nystrom BF Exact
n N5100 N5700 N51400 Corrected

1 5.899211 5.961921 5.967339 5.972379 5.972 5.97237
2 10.268443 10.417386 10.430047 10.442010 10.443 10.44211
3 13.767781 14.054263 14.078517 14.101276 14.104 14.10152
4 16.784747 17.258395 17.297500 17.335360 17.335 17.33572
5 19.467512 20.177458 20.234722 20.291708 20.293 20.29221
6 21.891635 22.887999 22.967933 23.046820 23.053 23.04714
7 24.101339 25.435892 25.541743 25.646532 25.648 25.64626
8 26.124257 27.851711 27.986463 28.121481 27.947 28.12078
9 27.977844 30.156480 30.323418 30.493311 30.194 30.48893

10 29.672260 32.366010 32.568895 32.778297 33.340 32.7693
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Define a new variable

x[S 2m

lL
2 D 1/3

@lLr 2E#, ~46!

such that Eq.~44! can be transformed as

S92xS50, ~47!

which is the Airy equation. The solution that satisfies t
boundary conditionS→0 as x→` is the Airy function
Ai( x). It is easy to show that the eigenenergy formula is

En52xnS lL
2

2m D 1/3

, ~48!

wherexn is thenth zero of the Airy function counting from
x50 along2x. In Ref. @5#, the valueslL55 andm50.75
are used. In this case, the eigenenergy formula is

En522.554 364 772xn . ~49!

VI. NUMERICAL RESULTS FOR THE S-STATE

The accuracy of the Nystrom plus correction method
sensitive to the range ofN. In this paper, increments of 10
in the range of 100<N<1400 are used. The reason for th
choice is that there are not enough spacings between
eigenvalues forN,100, and forN.1500 the numerica
noise begins to corrupt the monotonic convergent beha
of the eigenvalues. The correct eigenvalues are extrapol
from these numerical data by ax2 linear fit as described in
Sec. IV. The exactS-state eigenvalues are tabulated agai
the numerical results obtained by the basis function met
and the Nystrom plus corrections method in Table I. It sho
that the numerical results obtained by the Nystrom met
plus corrections are more accurate than the results obta
by the basis function method.

The kernel written for the nonrelativistic Schro¨dinger
equation~NRSE! can be easily generalized to that of th
relativistic two-body Thompson equation in the center-
06670
s

he

or
ed

t
d
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d
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-

mass frame by the replacement

p2

2m
→2~Ap21m22m!, ~50!

wherem is the reduced mass andm is the mass of each of th
two equal mass elementary particles. The numerical res
obtained using the Thompson equation are compared ag
those using the nonrelativistic Schro¨dinger equation in Table
II calculating to two decimal places. Our new results a
exactly the same as the previous results obtained in Ref@3#
that uses basis functionsgi

A(p) from Eq. ~13!.

VII. lÅ0 KERNELS

The lÞ0 kernels for the linear and Coulomb potentia
contain the Legendre function of the second kindQl(y) and
its derivative, respectively. There are several mathemat
issues that need to be addressed before constructingl
Þ0 kernels. First of all, the definition of

y[
p21p82

2p8p
5

1

2 S p

p8
1

p8

p D ~51!

TABLE II. Comparison of the ratios of eigenenergiesEn11 /E1

using the Thompson equation~TE! and the nonrelativistic Schro¨-
dinger equation~NRSE! using l 50 and lL50.2 GeV2. Mass is
measured in GeV.

n TE NRSE Mass

1 1.72 1.75 1.5
2 2.30 2.36 1.5
3 2.80 2.90 1.5
1 1.67 1.75 0.5
2 2.18 2.36 0.5
3 2.62 2.90 0.5
1 1.63 1.75 0.3
2 2.11 2.36 0.3
3 2.51 2.90 0.3
3-5
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is easily seen to yieldy.1 for p,p8.0. In Ref.@3#, Maung
et al. use the Legendre identity

Ql~y!5Pl~y!Q0~y!2wl 21~y!,
~52!

wl 21~y!5 (
m51

l
1

m
Pl 2m~y!Pm21~y!,

which is valid for21<y<1 @9,10# but can be extended t
y.1 by analytic continuation@11#. Ql8(y) is easily obtained
by straightforward differentiation. The derivative of Leg
endre polynomial can be calculated from one of the rec
rence formulas,

dPl~y!

dy
5y

dPl 21~y!

dy
1 lPl 21~y!, ~53!

which can be computed numerically by a recursive call. T
Legendre function can be generated by modifying the rou
plgndr inNumerical Recipes@7# to allow y.1. The accuracy
of Eq. ~52! and its derivatives is generally sufficient. Slight
more accurate results can be obtained by the explicit ev
ation of the Neumann integral,

Ql~y!5 1
2 E

21

1 1

~y2t !
Pl~ t !dt, ~54!

with derivative

Ql8~y!52 1
2 E

21

1 1

~y2t !2
Pl~ t !dt. ~55!

The first fewQl(y) are

Q0~y!5
1

2
ln

y11

y21
, ~56!

Q1~y!5
1

2
yln

y11

y21
21, ~57!

Q2~y!5
1

4
~3y221!ln

y11

y21
2

3

2
y, ~58!

Q3~y!5
1

4
~5y323y!ln

y11

y21
2

5

2
y21

2

3
, ~59!

Q4~y!5
1

16
~35y4230y213!ln

y11

y21
2

35

8
y31

55

24
y,

~60!

Q5~y!5
1

16
~63y5270y3115y!ln

y11

y21
2

63

8
y41

49

8
y2

2
8

15
. ~61!

Ql8(y) can be obtained by the direct differentiation ofQl(y),
such that
06670
r-

e
e

u-

Q08~y!5
1

12y2
, ~62!

Q18~y!5
y

12y2
2

1

2
ln

y21

y11
, ~63!

Q28~y!5
1

12y2
2

3

2
yln

y21

y11
23, ~64!

Q38~y!5
y

12y2
2

15y223

4
ln

y21

y11
2

15

2
y, ~65!

Q48~y!5
1

12y2
2

35y3215y

4
ln

y21

y11
2

35

2
y21

5

3
, ~66!

Q58~y!5
y

12y2
2

315y42210y2115

16
ln

y21

y11
2

315

8
y3

1
105

8
y. ~67!

As y→`, it is easily seen thatQ0(y)5Q08(y)→0. This limit
is true for allQl(y) andQl8(y) from applying the L’Hopital
rule. Unfortunately straightforward numerical calculation
Ql(y) and Ql8(y) by using Eqs.~56!–~67! leads to serious
numerical errors asy→`. At the same time, it is observe
that the numerical integration of Eqs.~54! and ~55! are rea-
sonably accurate in the same regime. Therefore the two
resentations are combined to minimize numerical error
using the Neumann integrals fory.y0 and the explicit for-
mulas fory<y0. Our codes usey0550.

The subtracted momentum-space NRSE with a linear
tential is given in Ref.@3#, which can be simplified as

p2

2m
fnl~p!1

lL

pp2E0

`

Ql8~y!fnl~p8!dp82
lL

pp2
fnl~p!

3E
0

`

Q08~y!dp82
lL

pp

l ~ l 11!

2
fnl~p!

3E
0

`Q0

p8
dp81

lLp

p

l ~ l 11!

4
fnl~p!5Enlfnl~p!.

~68!

The matrix elements of a symmetric kernel for arbitraryl are
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TABLE III. Eigenenergies in GeV of the nonrelativistic Schro¨dinger equation in momentum spac
(pNRSE) compared with those in the configuration space (rNRSE) and the relativistic Thompson equatio
in momentum space~TE!. The r-space Thompson equation result is not available. The values ofn51, lL

55 GeV, andm50.75 GeV are used.

pNRSE rNRSE
l N5100 N5700 N51400 Corrected Approx.

0 5.899211 5.961921 5.967339 5.972379 5.9719
1 8.528725 8.577713 8.582413 8.586002 8.5850
2 10.823099 10.847533 10.849675 10.851526 10.8514
3 12.917124 12.904221 12.902815 12.902117 12.9020
4 14.874248 14.812422 14.805462 14.801358 14.9790
5 16.730585 16.606651 16.597636 16.586361 16.5845

TE
0 5.859885 5.914287 5.919054 5.923117
1 8.164379 8.202282 8.205185 8.208610
2 10.053574 10.067261 10.068464 10.069762
3 11.700322 11.680163 11.678063 11.676817
4 13.185124 13.121767 13.116634 13.111239
5 14.553134 14.437612 14.427702 14.418173
ca
rg

al
he
.
u

ti

the
nts

ear
nly
mb
sh
IV.
me-
two
nell

d-
Kii 5
pi

2

2m
2

lL

4pi
2 (

k
Q08~yÞ1!~11pk

2!wtk

2
lL

4pi

l ~ l 11!

2 (
k

Q0~yÞ1!

pk
~11pk

2!wtk

1
lLp

4pi
l ~ l 11!2

lL

4pi
2

wl8~1!~11pi
2!wti , ~69!

Ki j 5
lL

4pipj
Ql8~y!A~11pi

2!~11pj
2!wtiwtj ~ iÞ j !.

~70!

Despite our method to control numerical noise, numeri
errors still manifest themselves in the form of spurious la
negative eigenvalues forl>8. Fortunately the rest of the
positive eigenvalues are accurate. Some sample eigenv
for 0< l<5 are shown in Table III, which also compares t
eigenvalues generated by both thep-space andr-space codes
The r-space eigenvalues are calculated by solving NRSE
ing the relaxation method@13#.

The Lande-subtraced momentum-space NRSE equa
with a Coulomb potential is also given in Ref.@3# and is
simplified as

p2

2m
fnl~p!1

lC

ppE0

`

Ql~y!fnl~p8!p8dp8

2
lC

p
pfnl~p!E

0

`Q0~y!

p8
dp81

lCp

2
pfnl~p!

5Enlfnl~p!. ~71!
06670
l
e

ues

s-

on

The kernel of a Coulomb potential can be symmetrized in
same way as that of a linear potential. The matrix eleme
are

Kii 5
pi

2

2m
2

lC

4
pi(

k

Q0~yÞ1!

pk
~11pk

2!wtk1
lCppi

2

2
lC

4
wl~1!~11pi

2!wti , ~72!

Ki j 5
lC

4
Ql~y!A~11pi

2!~11pj
2!wtiwtj , ~ iÞ j !.

~73!

The correction method that we have developed for the lin
potential cannot be used in the Coulomb case. The o
available technique of refining the eigenvalues of a Coulo
potential is by the way of increasing the number of me
stepsN. Some sample eigenvalues are shown in Table
Since both the linear and Coulomb potentials can be sym
trized using the same formalism, we can easily splice the
kernels together to calculate the eigenvalues of the Cor
~linear plus Coulomb! potential@12#

TABLE IV. Eigenenergies in eV of the hydrogen atom accor
ing to the nonrelativistic Schro¨dinger equation withn51.

l N5100 N51400 N53000 Exact

0 225.286631 213.600349 213.598508 213.598289
1 24.579043 23.400415 23.399659 23.399572
2 21.463504 21.511499 21.510980 21.510921
3 20.634523 20.850358 20.849940 20.849893
4 20.329730 20.544332 20.543972 20.543932
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V~r !5
lC

r
1lLr . ~74!

It is not surprising that the correction method derived for
linear potential may also work for the Cornell potential b
cause we expect that the error of the Cornell potentia
dominated by the error of the linear potential term. But it
a surprise that the correction method works more accura
with the Cornell potential than the linear potential as e
denced by vanishingly small variance andx2.

VIII. CONCLUSION

The basis function method requiresa priori knowledge of
the eigenfunctions in order to pick out an appropriate se
basis functions. The advantage of the Nystrom method is
no such prior knowledge of the eigenfunctions is need
The kernel constructed by the Nystrom method is also m
simpler than that by the basis function method. The eig
functions can be generated by the same Nystrom rout
A

A

D

D

ys

P.

06670
e
-
is

ly
-

f
at
d.
h
-

es

that compute the eigenvalues. The Nystrom plus correctio
more accurate than the basis function method in the ca
studied in this paper. In other words, the new method has
of the advantages—elegance, accuracy, and versatility. In
dition, the kernel of the relativistic and nonrelativistic equ
tion of motion with the Coulomb and linear potential can
symmetrized in exactly the same manner. It allows the c
culation of the eigenvalues of a Cornell potential readi
Since the Nystrom method can be generalized for higherl ’s,
we can use it to calculate the Regge trajectories. Since
Thompson equation that we have solved is a two-body eq
tion, we can use it to analyze the experimental meson Re
trajectories@14#. This will be pursued in later work.
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